Basilar membrane velocity in a cochlea with a modified organ of Corti.
نویسندگان
چکیده
Many cochlear models assign zero longitudinal coupling in the cochlea. Although this is consistent with the transverse basilar membrane (BM) fibers, the cochlear partition contains cellular longitudinal coupling. In cochlear models, longitudinal coupling diminishes passive BM tuning; however, it has recently been employed in theories of active mechanics to enhance tuning. Our goal in this study was to probe passive longitudinal coupling by comparing BM responses in damaged cochleae with passive responses in normal cochleae. The cochleae of gerbils were damaged with intratympanic neomycin followed by a waiting period to ensure that all of the cells of the partition were missing or severely disrupted. We then measured BM motion and examined the cochleae histologically. In comparison with passive responses in normal cochleae, we observed a downward shift in characteristic frequency, an expected consequence of reduced stiffness from cellular damage. However, we did not observe enhanced passive tuning in the damaged cochleae, as would be expected if longitudinal coupling were substantially greater in the normal cochleae. Thus, we conclude that cell-based longitudinal coupling is not large enough to influence passive cochlear mechanics. This finding constrains theories of active mechanics.
منابع مشابه
Consequences of Location-Dependent Organ of Corti Micro-Mechanics
The cochlea performs frequency analysis and amplification of sounds. The graded stiffness of the basilar membrane along the cochlear length underlies the frequency-location relationship of the mammalian cochlea. The somatic motility of outer hair cell is central for cochlear amplification. Despite two to three orders of magnitude change in the basilar membrane stiffness, the force capacity of t...
متن کاملStiffness of the gerbil basilar membrane: radial and longitudinal variations.
Experimental data on the mechanical properties of the tissues of the mammalian cochlea are essential for understanding the frequency- and location-dependent motion patterns that result in response to incoming sound waves. Within the cochlea, sound-induced vibrations are transduced into neural activity by the organ of Corti, the gross motion of which is dependent on the motion of the underlying ...
متن کاملObserving middle and inner ear mechanics with novel intracochlear pressure sensors.
Intracochlear pressure was measured in vivo in the base of the gerbil cochlea. The measurements were made over a wide range of frequencies simultaneously in scalae vestibuli and tympani. Pressure was measured just adjacent to the stapes in scala vestibuli and at a number of positions spaced by tens of micrometers, including a position within several micrometers of the basilar membrane, in scala...
متن کاملTwo passive mechanical conditions modulate power generation by the outer hair cells
In the mammalian cochlea, small vibrations of the sensory epithelium are amplified due to active electro-mechanical feedback of the outer hair cells. The level of amplification is greater in the base than in the apex of the cochlea. Theoretical studies have used longitudinally varying active feedback properties to reproduce the location-dependent amplification. The active feedback force has bee...
متن کاملThree-dimensional motion of the organ of Corti.
The vibration of the organ of Corti, a three-dimensional micromechanical structure that incorporates the sensory cells of the hearing organ, was measured in three mutually orthogonal directions. This was achieved by coupling the light of a laser Doppler vibrometer into the side arm of an epifluorescence microscope to measure velocity along the optical axis of the microscope, called the transver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 100 4 شماره
صفحات -
تاریخ انتشار 2011